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The following was taken from "How to Read and Do Proofs: An
Introduction to Mathematical Thought Processes" by Daniel Snow,
John Wiley & Sons, Inc. New York 2002

IB MATH HL SUMMER WORK:

Read through the notes and examples.
Complete the examples on the last page.
Due first day of class.

11.2 INDUCTION

In Chapter 5, you learned to use the choose method when the quantifier “for
all” appears in the statement B. There is one special form of B containing
the quantifier “for all” for which a separate technique known as induction is
likely to be more successful.

How to Use Induction

You should consider induction seriously (even before the choose method) when
B has the form:

For every integer n > 1, “something happens,”

where the something that happens is some statement, P(n), that depends on
the integer n. The following is an example:

n(n+1)

For all integers n>1, Y "k = 5

n
, where > k=1+4---+n.
k=1 b=

=1

P(n)
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When considering induction, the key words to look for are “integer” and
“> 1.”

One way to attempt proving such statements is to make an infinite list
of statements, one for each of the integers starting from n = 1, and then
prove each statement separately. While the first few statements on the list
are usually easy to verify, the issue is how to check statement number n and
beyond. For the foregoing example, the list is:

1
Py Sk= 31211—) or 1=1
k=1
2 2(2+1
P(2): >, k=22t or 1+2=3
k=1
= 3(3+1
P(3): > k=26t or 1+243=6
k=1
R
P(n) : 3 k= Do)
k=1 2
| Bl Gaeiayed] (n+1)(n+2)
P(n + 1) 5 kz—:l k = 5 — 5 .

Induction is a clever method for proving that each of these statements in
the infinite list is true. Think of induction as a proof machine that starts with
P(1) and progresses down the list, proving each statement as it proceeds.
Here is how the machine works.

The machine is started by verifying that P(1) is true, which is easy to do
for the foregoing example. Then P(1) is fed into the machine. The machine
uses the fact that P(1) is true and automatically proves that P(2) is true.
You then put P(2) into the machine. The machine uses the fact that P(2) is
true to reach the conclusion that P(3) is true, and so on (see Figure 11.1).

Observe that, by the time the machine is going to prove that P(n + 1) is
true, it will already have shown that P(n) is true (from the previous step).
Thus, in designing the machine, you can assume that P(n) is true; your job
is to make sure that P(n + 1) is also true. In summary, the following steps
constitute a proof by induction.

The Steps of Induction

Step 1. Verify that P(1) is true.
Step 2. Use the assumption that P(n) is true to prove that P(n + 1) is
true.
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Verify that
P(1) is true

P(1)
is true
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Fig. 11.1 The proof machine for induction.

To.perform Step 1, replace n everywhere in P(n) by 1. To verify that the
resulting s.tatement is true usually requires only some minor rewriting.
. Step 2 is more challenging. You must reach the conclusion that P(n+1)
is tru-e by using the assumption that P(n) is true. There is a standard wa
of doing this. Begin by writing the statement P(n+ 1), which you want tZ
conclude is true. Because you are assuming that P(n) is true, you should
somehow try to rewrite the statement P(n + 1) in terms of Pin) for then
you can make use of the assumption that P(n) is true. Using the as:sum tion
that P(n) is true is referred to as using the induction hypot:hesisp On
estabhshing that P(n+1) is true, the proof is complete. The steps of indu.ction
are illustrated with the following proposition.

Proposition 19 For every integer n > 1 i k= nntl)

> 1, .

k=1
Analysis of Proof. When usin i i it i
: 7 g the method of induction, it is 1
write the statement P(n), in this case: i ek
P(n): Y k=2t
k=1 g

The first step in a proof by induction i i i
‘ y induction is to verify P(1). Replacing
by 1 in P(n), you obtain D P evedhere

11.2 INDUCTION JLikiL

1
P(1): I;k e

With a small amount of rewriting, it is easy to verify this because

1

Z k=1= M
k=1 2
This step is often so easy that it is virtually omitted in the condensed proof
simply by saying, “The statement is clearly true for n = 1.7

The second step is more involved. You must use the assumption that P(n)
is true to reach the conclusion that P(n+1) is true. The best way to proceed
is to write the statement P(n+ 1) by replacing carefully n everywhere in P(n)
with n 4 1 and rewriting a bit, if necessary. In this case

n+1
Pn+1): Y k= (n+1)[(g+1)+1] _ (nt+1)(n+2)
k=1

5 .

To reach the conclusion that P(n + 1) is true, begin with the left side of the
equality in P(n + 1) and try to make that side look like the right side. In so
doing, you should use the information in P(n) by relating the left side of the
equality in P(n+ 1) to the left side of the equality in P(n). Then you will be
able to use the right side of the equality in P(n). In this example,

n

P(n+1): ng: (k 1k> +(n+1).

n
Now you can use the assumption that P(n) is true by replacing Y k with
k=1

n(n + 1)/2, obtaining

n+1 n AL
P(n+1): Zkz(E k>+(n+1):—2 + (n+1).
k=1 =1

All that remains is a bit of algebra to rewrite E(HTJFQ +(n+1) as (n_+1_)2(n;2)’

thus obtaining the right side of the equality in P(n + 1). The algebraic steps
are:
Mot )=t (5+1) = (nt1)e+2)
2 2 2

Your ability to relate P(n+1) to P(n) so as to use the induction hypothesis
that P(n) is true determines the success of a proof by induction. If you are
unable to relate P(n+1) to P(n), then you might wish to consider a different
proof technique. On the other hand, if you can relate P(n + 1) to P(n),
you will find that induction is easier to use than almost any other technique.
To illustrate this fact, you are asked in the exercises to prove Proposition 19
without using induction. Compare your proof with the condensed proof that
follows.
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Proof of Proposition 19. The statement is clearly true for n = 1. Assume
the statement is true for n, that is, that Y., _, k = n(n 4+ 1)/2. Then

n+1

k;k = <éjll<:)+(n+1)

= 20t (1)
= (n+1)(2+1)

(n+1)(n+2)
B E—

Thus the statement is true for n + 1 and so the proof is complete. 0

Note that induction does not help you to discover the correct form of the
statement P(n). Rather, induction only verifies that a given statement P(n)
is true for all integers n greater than or equal to some initial one.

Some Variations on Induction

From the foregoing discussion, you know that in the second step in a proof
by induction, you use the assumption that P(n) is true to show that P(n+1)
is true. From a notational point of view, some authors prefer to use the
assumption that P(n — 1) is true to show that P(n) is true. These two
approaches are identical—either can be used, depending on your notational
preference. What is important is that you establish that if a general statement
on the infinite list is true, then the next statement is also true.

When using induction, the first value for n need not be 1. For instance,
you can use induction to prove that “for all integers n > 5, 2" > n2.” The
only modification is that, to start the proof, you must verify P(n) for the first
given value of n. In this case, that first value is n = 5, so you have to check
that 2° > 52 (which is true because 25 = 32 while 52 = 25). The second step
of the induction proof remains the same—you still have to show that if P(n)
is true (that is, 2" > n?), then P(n+ 1) is also true [that is, 2771 > (n+1)?]
In so doing, you can also use the fact that n > 5, if necessary.

Another modification to the basic induction method arises when you are
having difficulty relating P(n + 1) to P(n). Suppose, however, that you can
relate P(n + 1) to P(j), where j < n. In this case, you would like to use the
fact that P(j) is true but, can you assume that P(j) is, in fact, true? The
answer is yes. To see why, recall the analogy of the proof machine (look again
at Figure 11.1) and observe that, by the time the machine has to show that
P(n + 1) is true, the machine has already proved that all of the statements
P(1),...,P(j),...,P(n) are true. Thus, when trying to show that P(n+1)is
true, you can assume that P(n) and all preceding statements are true. Such
a proof is referred to as generalized induction and is illustrated now.
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11.3 READING A PROOF

The process of reading and understanding a proof is demonstrated with the
following proposition.

Proposition 20 Any integer n > 2 can be expressed as a finite product of
primes (see Definition 2 on page 24).

Proof of Proposition 20. (For reference purposes, each sentence of the

proof is written on a separate line.)

S1: The statement is clearly true for n = 2.

S2: Now assume the statement is true for all integers between
2 and n, that is, that any integer j with 2 < j <n can be
expressed as a finite product of primes.

S3: Ifn + 1 is prime, the statement is true for n + 1.

S4: Otherwise, n + 1 has a prime divisor, that is, there are
integers p and ¢ with p prime and 2 < ¢ < n such that
n+1=pq.

S5: But by the induction hypothesis, ¢ can be expressed as a
finite product of primes and, therefore, so can n + 1.

The proof is now complete. [

Analysis of Proof. An interpretation of statements S1 through S5 follows.

Interpretation of S1: The statement is clearly true for n = 2. )

The author is performing the first step of induction by mentioning that thf:
statement is true for the first value of n, namely, n = 2. The statement is
true because 2 is itself prime.

Interpretation of S2: Now assume the statement is true for all integers
between 2 and n, that is, that any integer j with 2 < j < n can be expressed
as a finite product of primes. .

The author is performing the second step of generalized induction by as-
suming that the statement is true for all integers between 2 and n. It remains
to show that the statement is true for n + 1.

Interpretation of S3: If n + 1 is prime, the statement is true for n + 1
The author notes that the statement is true for n 4+ 1 when n + 1 is prime,
which is clearly correct. Presumably, the author will also show that the state-

ment is true when n + 1 is not prime.

Interpretation of S4: Otherwise, n + 1 has a prime divisor, that is, there

are integers p and q with p prime and 2 < g < n such that n + 1' =pa-
The author is showing that the statement is true when n + 1 is pot prime.

Specifically, the author is using the fact that when n + 1 is not prime, n + 1
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has a prime divisor, p. The author then works forward from the fact that p
divides n -+ 1 using Definition 1 on 24 to claim that there is an integer ¢ with
2 < g < n such that n+1 = pq.

Interpretation of S5: But by the induction hypothesis, q can be expressed
as a finite product of primes and, therefore, so cann+ 1. ‘

The author is applying the induction hypothesis to ¢, which is valid because
¢ is an integer between 2 and n (see S4). Doing so yields that ¢ is a finite
product of primes. The author then notes that, as a result, n + 1 = pq is
also a finite product of the prime p and the product of primes that constitute
g. The generalized induction proof is now complete because the author has
correctly established that the statement is true for n + 1.

Summary

In this chapter, you have learned two special quantifier techniques: the unique-
ness methods and induction.
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Induction

Use induction when the statement you are trying to prove has the form, “For
3

every integer n > ng, P(n),” where P(n) is
_ > no, some statement th
n. To apply the method of induction, BlNGegasls o

1. Verify that the statement P(n) is true for ng. (To do this, replace n

everywhere in P(n) by ng, rewrite the resulti
; ; ulting st
establish that P(ng) is true.) f atement, and try o

2. Assume that P(n) is true.

3. Write the statement P(n + 1) by replacing n everywhere in P(n) with

n+1. (Some rewritin i
iy g may be necessary to express P(n+ 1) in a clean

4. %each the conclusion that P(n+ 1) is true. To do so, relate P(n+1) to
(n) .and then use the fact that P(n) is true. The key to using induction
rests in your ability to relate P(n + 1) to P(n).
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DUE FIRST DAY OF CLASS!

Prove the following:

n(n+1)(n+2)

11IX2+2X3+3X4+4X5++nn+1) ="

2 2
2)13+23+33+43+...+n3:n(r;+1)

3)1x11+2x21+3x3l+-nxnl=Mn+1)'-1
4)n3 + 2nis divisible by 3 for all positive integers n.
5) 6™ — 1 is divisible by 5 for all integersn = 0

6) 7" — 4™ — 3" is divisible by 12 foralln € Z*
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